Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotoxicology ; 14(10): 1342-1361, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33078975

RESUMO

We investigated the toxicity of Iron oxide and Zinc oxide engineered nanoparticles (ENPs) on Paracentrotus lividus sea urchin embryos and three species of microalgae. Morphological responses, internalization, and potential impacts of Fe2O3 and ZnO ENPs on physiology and metabolism were assessed. Both types of ENPs affected P. lividus larval development, but ZnO ENPs had a much stronger effect. While growth of the alga Micromonas commoda was severely impaired by both ENPs, Ostreococcus tauri or Nannochloris sp. were unaffected. Transmission electron microscopy showed the internalization of ENPs in sea urchin embryonic cells while only nanoparticle interaction with external membranes was evidenced in microalgae, suggesting that marine organisms react in diverse ways to ENPs. Transcriptome-wide analysis in P. lividus and M. commoda showed that many different physiological pathways were affected, some of which were common to both species, giving insights about the mechanisms underpinning toxic responses.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Microalgas/efeitos dos fármacos , Nanopartículas/toxicidade , Paracentrotus/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Animais , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Paracentrotus/genética , Paracentrotus/crescimento & desenvolvimento
2.
Sci Adv ; 6(14): eaay2587, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270031

RESUMO

Virus-microbe interactions in the ocean are commonly described by "boom and bust" dynamics, whereby a numerically dominant microorganism is lysed and replaced by a virus-resistant one. Here, we isolated a microalga strain and its infective dsDNA virus whose dynamics are characterized instead by parallel growth of both the microalga and the virus. Experimental evolution of clonal lines revealed that this viral production originates from the lysis of a minority of virus-susceptible cells, which are regenerated from resistant cells. Whole-genome sequencing demonstrated that this resistant-susceptible switch involved a large deletion on one chromosome. Mathematical modeling explained how the switch maintains stable microalga-virus population dynamics consistent with their observed growth pattern. Comparative genomics confirmed an ancient origin of this "accordion" chromosome despite a lack of sequence conservation. Together, our results show how dynamic genomic rearrangements may account for a previously overlooked coexistence mechanism in microalgae-virus interactions.


Assuntos
Genoma , Genômica , Interações Hospedeiro-Patógeno , Fitoplâncton/virologia , Simbiose , Algoritmos , Genômica/métodos , Microalgas/ultraestrutura , Microalgas/virologia , Modelos Teóricos , Fitoplâncton/ultraestrutura
3.
NAR Genom Bioinform ; 2(4): lqaa080, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33575626

RESUMO

The small nucleolar RNAs (snoRNAs), essential for ribosome biogenesis, constitute a major family of medium-size noncoding RNAs (mncRNAs) in all eukaryotes. We present here, for the first time in a marine unicellular alga, the characterization of the snoRNAs family in Ostreococcus tauri, the smallest photosynthetic eukaryote. Using a transcriptomic approach, we identified 131 O. tauri snoRNAs (Ot-snoRNA) distributed in three classes: the C/D snoRNAs, the H/ACA snoRNAs and the MRP RNA. Their genomic organization revealed a unique combination of both the intronic organization of animals and the polycistronic organization of plants. Remarkably, clustered genes produced Ot-snoRNAs with unusual structures never previously described in plants. Their abundances, based on quantification of reads and northern blots, showed extreme differences in Ot-snoRNA accumulation, mainly determined by their differential stability. Most of these Ot-snoRNAs were predicted to target rRNAs or snRNAs. Seventeen others were orphan Ot-snoRNAs that would not target rRNA. These were specific to O. tauri or Mamiellophyceae and could have functions unrelated to ribosome biogenesis. Overall, these data reveal an 'evolutionary response' adapted to the extreme compactness of the O. tauri genome that accommodates the essential Ot-snoRNAs, developing multiple strategies to optimize their coordinated expression with a minimal cost on regulatory circuits.

4.
J Phycol ; 56(1): 37-51, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31608987

RESUMO

Members of the class Mamiellophyceae comprise species that can dominate picophytoplankton diversity in polar waters. Yet, polar species are often morphologically indistinguishable from temperate species, although clearly separated by molecular features. Here we examine four Mamiellophyceae strains from the Canadian Arctic. The 18S rRNA and Internal Transcribed Spacer 2 (ITS2) gene phylogeny place these strains within the family Mamiellaceae (Mamiellales, Mamiellophyceae) in two separate clades of the genus Mantoniella. ITS2 synapomorphies support their placement as two new species, Mantoniella beaufortii and Mantoniella baffinensis. Both species have round green cells with diameter between 3 and 5 µm, one long flagellum and a short flagellum (~1 µm) and are covered by spiderweb-like scales, making both species similar to other Mantoniella species. Morphologically, M. beaufortii and M. baffinensis are most similar to the cosmopolitan M. squamata with only minor differences in scale structure distinguishing them. Screening of global marine metabarcoding data sets indicates M. beaufortii has only been recorded in seawater and sea ice samples from the Arctic, while no environmental barcode matches M. baffinensis. Like other Mamiellophyceae genera that have distinct polar and temperate species, the polar distribution of these new species suggests they are cold or ice-adapted Mantoniella species.


Assuntos
Clorófitas , Regiões Árticas , Canadá , Filogenia , Água do Mar
5.
Genes (Basel) ; 10(5)2019 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-31130696

RESUMO

Ostreococcustauri is an easily cultured representative of unicellular algae (class Mamiellophyceae) that abound in oceans worldwide. Eight complete 13-22 Mb genomes of phylogenetically divergent species within this class are available, and their DNA sequences are nearly always present in metagenomic data produced from marine samples. Here we describe a simplified and robust transformation protocol for the smallest of these algae (O. tauri). Polyethylene glycol (PEG) treatment was much more efficient than the previously described electroporation protocol. Short (2 min or less) incubation times in PEG gave >104 transformants per microgram DNA. The time of cell recovery after transformation could be reduced to a few hours, permitting the experiment to be done in a day rather than overnight as used in previous protocols. DNA was randomly inserted in the O. tauri genome. In our hands PEG was 20-40-fold more efficient than electroporation for the transformation of O. tauri, and this improvement will facilitate mutagenesis of all of the dispensable genes present in the tiny O. tauri genome.


Assuntos
Clorófitas/genética , Variação Genética , Transformação Genética/genética , Sequência de Bases , Clorófitas/efeitos dos fármacos , Clorófitas/crescimento & desenvolvimento , Genoma/genética , Filogenia , Polietilenoglicóis/farmacologia , Transformação Genética/efeitos dos fármacos
6.
Genome Biol Evol ; 10(9): 2347-2365, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113623

RESUMO

While the molecular events involved in cell responses to heat stress have been extensively studied, our understanding of the genetic basis of basal thermotolerance, and particularly its evolution within the green lineage, remains limited. Here, we present the 13.3-Mb haploid genome and transcriptomes of a halotolerant and thermotolerant unicellular green alga, Picochlorum costavermella (Trebouxiophyceae) to investigate the evolution of the genomic basis of thermotolerance. Differential gene expression at high and standard temperatures revealed that more of the gene families containing up-regulated genes at high temperature were recently evolved, and less originated at the ancestor of green plants. Inversely, there was an excess of ancient gene families containing transcriptionally repressed genes. Interestingly, there is a striking overlap between the thermotolerance and halotolerance transcriptional rewiring, as more than one-third of the gene families up-regulated at 35 °C were also up-regulated under variable salt concentrations in Picochlorum SE3. Moreover, phylogenetic analysis of the 9,304 protein coding genes revealed 26 genes of horizontally transferred origin in P. costavermella, of which five were differentially expressed at higher temperature. Altogether, these results provide new insights about how the genomic basis of adaptation to halo- and thermotolerance evolved in the green lineage.


Assuntos
Clorófitas/genética , Evolução Molecular , Resposta ao Choque Térmico , Microalgas/genética , Aclimatação , Clorófitas/fisiologia , Regulação da Expressão Gênica de Plantas , Transferência Genética Horizontal , Genoma de Planta , Microalgas/fisiologia , Filogenia , Termotolerância , Transcriptoma
7.
Viruses ; 10(8)2018 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-30126244

RESUMO

Prasinoviruses are large dsDNA viruses commonly found in aquatic systems worldwide, where they can infect and lyse unicellular prasinophyte algae such as Ostreococcus. Host susceptibility is virus strain-specific, but resistance of susceptible Ostreococcus tauri strains to a virulent virus arises frequently. In clonal resistant lines that re-grow, viruses are usually present for many generations, and genes clustered on chromosome 19 show physical rearrangements and differential expression. Here, we investigated changes occurring during the first two weeks after inoculation of the prasinovirus OtV5. By serial dilutions of cultures at the time of inoculation, we estimated the frequency of resistant cells arising in virus-challenged O. tauri cultures to be 10-3⁻10-4 of the inoculated population. Re-growing resistant cells were detectable by flow cytometry 3 days post-inoculation (dpi), visible re-greening of cultures occurred by 6 dpi, and karyotypic changes were visually detectable at 8 dpi. Resistant cell lines showed a modified spectrum of host-virus specificities and much lower levels of OtV5 adsorption.


Assuntos
Adaptação Fisiológica/genética , Clorófitas/genética , DNA Viral/genética , Genoma Viral , Microalgas/genética , Phycodnaviridae/crescimento & desenvolvimento , Adaptação Fisiológica/imunologia , Clorófitas/imunologia , Clorófitas/virologia , Cromossomos de Plantas/química , Cromossomos de Plantas/imunologia , DNA Viral/imunologia , Resistência à Doença/genética , Especificidade de Hospedeiro , Cariótipo , Microalgas/imunologia , Microalgas/virologia , Phycodnaviridae/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Fatores de Tempo
8.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187539

RESUMO

Prasinoviruses are large DNA viruses that infect diverse genera of green microalgae worldwide in aquatic ecosystems, but molecular knowledge of their life cycles is lacking. Several complete genomes of both these viruses and their marine algal hosts are now available and have been used to show the pervasive presence of these species in microbial metagenomes. We have analyzed the life cycle of Ostreococcus tauri virus 5 (OtV5), a lytic virus, using transcriptome sequencing (RNA-Seq) from 12 time points of healthy or infected Ostreococcus tauri cells over a day/night cycle in culture. In the day, viral gene transcription remained low while host nitrogen metabolism gene transcription was initially strongly repressed for two successive time points before being induced for 8 h, but during the night, viral transcription increased steeply while host nitrogen metabolism genes were repressed and many host functions that are normally reduced in the dark appeared to be compensated either by genes expressed from the virus or by increased expression of a subset of 4.4% of the host's genes. Some host cells underwent lysis progressively during the night, but a larger proportion were lysed the following morning. Our data suggest that the life cycles of algal viruses mirror the diurnal rhythms of their hosts.IMPORTANCE Prasinoviruses are common in marine environments, and although several complete genomes of these viruses and their hosts have been characterized, little is known about their life cycles. Here we analyze in detail the transcriptional changes occurring over a 27-h-long experiment in a natural diurnal rhythm, in which the growth of host cells is to some extent synchronized, so that host DNA replication occurs late in the day or early in the night and cell division occurs during the night. Surprisingly, viral transcription remains quiescent over the daytime, when the most energy (from light) is available, but during the night viral transcription activates, accompanied by expression of a few host genes that are probably required by the virus. Although our experiment was accomplished in the lab, cyclical changes have been documented in host transcription in the ocean. Our observations may thus be relevant for eukaryotic phytoplankton in natural environments.


Assuntos
Clorófitas/virologia , Ritmo Circadiano , Phycodnaviridae/patogenicidade , Fitoplâncton/virologia , Evolução Biológica , Clorófitas/genética , Replicação do DNA , Metagenoma , Fitoplâncton/genética , Ativação Transcricional
9.
Proc Natl Acad Sci U S A ; 114(36): E7489-E7498, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827361

RESUMO

Phytoplankton community structure is shaped by both bottom-up factors, such as nutrient availability, and top-down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer.


Assuntos
Transferência Genética Horizontal/genética , Interações Hospedeiro-Patógeno/genética , Nitrogênio/metabolismo , Fitoplâncton/virologia , Proteínas Virais/metabolismo , Membrana Celular/virologia , Clorófitas/virologia , Genes Virais/genética , Genoma Viral/genética
10.
Sci Adv ; 3(7): e1700239, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28695208

RESUMO

Tiny photosynthetic microorganisms that form the picoplankton (between 0.3 and 3 µm in diameter) are at the base of the food web in many marine ecosystems, and their adaptability to environmental change hinges on standing genetic variation. Although the genomic and phenotypic diversity of the bacterial component of the oceans has been intensively studied, little is known about the genomic and phenotypic diversity within each of the diverse eukaryotic species present. We report the level of genomic diversity in a natural population of Ostreococcus tauri (Chlorophyta, Mamiellophyceae), the smallest photosynthetic eukaryote. Contrary to the expectations of clonal evolution or cryptic species, the spectrum of genomic polymorphism observed suggests a large panmictic population (an effective population size of 1.2 × 107) with pervasive evidence of sexual reproduction. De novo assemblies of low-coverage chromosomes reveal two large candidate mating-type loci with suppressed recombination, whose origin may pre-date the speciation events in the class Mamiellophyceae. This high genetic diversity is associated with large phenotypic differences between strains. Strikingly, resistance of isolates to large double-stranded DNA viruses, which abound in their natural environment, is positively correlated with the size of a single hypervariable chromosome, which contains 44 to 156 kb of strain-specific sequences. Our findings highlight the role of viruses in shaping genome diversity in marine picoeukaryotes.


Assuntos
Cromossomos , Variação Genética , Genética Populacional , Genômica , Fitoplâncton/genética , Suscetibilidade a Doenças , Evolução Molecular , Genômica/métodos , Mutação , Fenótipo , Filogenia , Fitoplâncton/classificação , Fitoplâncton/virologia , Polimorfismo de Nucleotídeo Único , Seleção Genética
11.
PLoS Pathog ; 12(10): e1005965, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27788272

RESUMO

Micro-algae of the genus Ostreococcus and related species of the order Mamiellales are globally distributed in the photic zone of world's oceans where they contribute to fixation of atmospheric carbon and production of oxygen, besides providing a primary source of nutrition in the food web. Their tiny size, simple cells, ease of culture, compact genomes and susceptibility to the most abundant large DNA viruses in the sea render them attractive as models for integrative marine biology. In culture, spontaneous resistance to viruses occurs frequently. Here, we show that virus-producing resistant cell lines arise in many independent cell lines during lytic infections, but over two years, more and more of these lines stop producing viruses. We observed sweeping over-expression of all genes in more than half of chromosome 19 in resistant lines, and karyotypic analyses showed physical rearrangements of this chromosome. Chromosome 19 has an unusual genetic structure whose equivalent is found in all of the sequenced genomes in this ecologically important group of green algae.


Assuntos
Clorófitas/genética , Cromossomos/imunologia , Sequência de Bases , Clorófitas/virologia , Eletroforese em Gel de Campo Pulsado , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia
12.
Front Microbiol ; 7: 1414, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27656176

RESUMO

Microalgal-bacterial interactions are commonly found in marine environments and are well known in diatom cultures maintained in laboratory. These interactions also exert strong effects on bacterial and algal diversity in the oceans. Small green eukaryote algae of the class Mamiellophyceae (Chlorophyta) are ubiquitous and some species, such as Ostreococcus spp., are particularly important in Mediterranean coastal lagoons, and are observed as dominant species during phytoplankton blooms in open sea. Despite this, little is known about the diversity of bacteria that might facilitate or hinder O. tauri growth. We show, using rDNA 16S sequences, that the bacterial community found in O. tauri RCC4221 laboratory cultures is dominated by γ-proteobacteria from the Marinobacter genus, regardless of the growth phase of O. tauri RCC4221, the photoperiod used, or the nutrient conditions (limited in nitrogen or phosphorous) tested. Several strains of Marinobacter algicola were detected, all closely related to strains found in association with taxonomically distinct organisms, particularly with dinoflagellates and coccolithophorids. These sequences were more distantly related to M. adhaerens, M. aquaeoli and bacteria usually associated to euglenoids. This is the first time, to our knowledge, that distinct Marinobacter strains have been found to be associated with a green alga in culture.

13.
J Virol ; 89(11): 5812-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25787287

RESUMO

UNLABELLED: The functional diversity of eukaryotic viruses infecting a single host strain from seawater samples originating from distant marine locations is unknown. To estimate this diversity, we used lysis plaque assays to detect viruses that infect the widespread species Ostreococcus lucimarinus, which is found in coastal and mesotrophic systems, and O. tauri, which was isolated from coastal and lagoon sites from the northwest Mediterranean Sea. Detection of viral lytic activities against O. tauri was not observed using seawater from most sites, except those close to the area where the host strain was isolated. In contrast, the more cosmopolitan O. lucimarinus species recovered viruses from locations in the Atlantic and Pacific Oceans and the Mediterranean Sea. Six new O. lucimarinus viruses (OlVs) then were characterized and their genomes sequenced. Two subgroups of OlVs were distinguished based on their genetic distances and on the inversion of a central 32-kb-long DNA fragment, but overall their genomes displayed a high level of synteny. The two groups did not correspond to proximity of isolation sites, and the phylogenetic distance between these subgroups was higher than the distances observed among viruses infecting O. tauri. Our study demonstrates that viruses originating from very distant sites are able to infect the same algal host strain and can be more diverse than those infecting different species of the same genus. Finally, distinctive features and evolutionary distances between these different viral subgroups does not appear to be linked to biogeography of the viral isolates. IMPORTANCE: Marine eukaryotic phytoplankton virus diversity has yet to be addressed, and more specifically, it is unclear whether diversity is connected to geographical distance and whether differential infection and lysis patterns exist among such viruses that infect the same host strain. Here, we assessed the genetic distance of geographically segregated viruses that infect the ubiquitous green microalga Ostreococcus. This study provides the first glimpse into the diversity of predicted gene functions in Ostreococcus viruses originating from distant sites and provides new insights into potential host distributions and restrictions in the world oceans.


Assuntos
Biodiversidade , Clorófitas/virologia , Vírus/classificação , Vírus/isolamento & purificação , Oceano Atlântico , Análise por Conglomerados , Ordem dos Genes , Genoma Viral , Mar Mediterrâneo , Dados de Sequência Molecular , Oceano Pacífico , Filogenia , Água do Mar/microbiologia , Água do Mar/virologia , Análise de Sequência de DNA , Homologia de Sequência , Sintenia , Ensaio de Placa Viral , Vírus/genética
14.
BMC Genomics ; 15: 1103, 2014 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-25494611

RESUMO

BACKGROUND: Cost effective next generation sequencing technologies now enable the production of genomic datasets for many novel planktonic eukaryotes, representing an understudied reservoir of genetic diversity. O. tauri is the smallest free-living photosynthetic eukaryote known to date, a coccoid green alga that was first isolated in 1995 in a lagoon by the Mediterranean sea. Its simple features, ease of culture and the sequencing of its 13 Mb haploid nuclear genome have promoted this microalga as a new model organism for cell biology. Here, we investigated the quality of genome assemblies of Illumina GAIIx 75 bp paired-end reads from Ostreococcus tauri, thereby also improving the existing assembly and showing the genome to be stably maintained in culture. RESULTS: The 3 assemblers used, ABySS, CLCBio and Velvet, produced 95% complete genomes in 1402 to 2080 scaffolds with a very low rate of misassembly. Reciprocally, these assemblies improved the original genome assembly by filling in 930 gaps. Combined with additional analysis of raw reads and PCR sequencing effort, 1194 gaps have been solved in total adding up to 460 kb of sequence. Mapping of RNAseq Illumina data on this updated genome led to a twofold reduction in the proportion of multi-exon protein coding genes, representing 19% of the total 7699 protein coding genes. The comparison of the DNA extracted in 2001 and 2009 revealed the fixation of 8 single nucleotide substitutions and 2 deletions during the approximately 6000 generations in the lab. The deletions either knocked out or truncated two predicted transmembrane proteins, including a glutamate-receptor like gene. CONCLUSION: High coverage (>80 fold) paired-end Illumina sequencing enables a high quality 95% complete genome assembly of a compact ~13 Mb haploid eukaryote. This genome sequence has remained stable for 6000 generations of lab culture.


Assuntos
Clorófitas/genética , Genoma de Planta , Genômica , Biologia Computacional , Evolução Molecular , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Dados de Sequência Molecular
15.
Virology ; 466-467: 146-57, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25109909

RESUMO

Numerous seawater lagoons punctuate the southern coastline of France. Exchanges of seawater between these lagoons and the open sea are limited by narrow channels connecting them. Lagoon salinities vary according to evaporation and to the volume of freshwater arriving from influent streams, whose nutrients also promote the growth of algae. We compared Prasinovirus communities, whose replication is supported by microscopic green algae, in four lagoons and at a coastal sampling site. Using high-throughput sequencing of DNA from a giant virus-specific marker gene, we show that the environmental conditions significantly affect the types of detectable viruses across samples. In spatial comparisons between 5 different sampling sites, higher levels of phosphates, nitrates, nitrites, ammonium and silicates tend to increase viral community richness independently of geographical distances between the sampling sites. Finally, comparisons of Prasinovirus communities at 2 sampling sites over a period of 10 months highlighted seasonal effects and the preponderant nature of phosphate concentrations in constraining viral distribution.


Assuntos
Clorófitas/virologia , Variação Genética , Genoma Viral/genética , Fosfatos/metabolismo , Phycodnaviridae/isolamento & purificação , Sequência de Bases , Primers do DNA/genética , DNA Viral/química , DNA Viral/genética , Meio Ambiente , Genótipo , Geografia , Sequenciamento de Nucleotídeos em Larga Escala , Mar Mediterrâneo , Anotação de Sequência Molecular , Dados de Sequência Molecular , Phycodnaviridae/classificação , Phycodnaviridae/genética , Filogenia , Estações do Ano , Água do Mar/virologia , Análise de Sequência de DNA
16.
Environ Microbiol ; 15(8): 2147-53, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23826978

RESUMO

With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains.


Assuntos
Bases de Dados Genéticas/normas , Bases de Dados Genéticas/tendências , Eucariotos/genética , Genômica , Clorófitas/genética , Código de Barras de DNA Taxonômico , Diatomáceas/genética , Variação Genética , Genoma de Planta/genética
17.
Protist ; 164(5): 643-59, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23892412

RESUMO

Coastal marine waters in many regions worldwide support abundant populations of extremely small (1-3 µm diameter) unicellular eukaryotic green algae, dominant taxa including several species in the class Mamiellophyceae. Their diminutive size conceals surprising levels of genetic diversity and defies classical species' descriptions. We present a detailed analysis within the genus Ostreococcus and show that morphological characteristics cannot be used to describe diversity within this group. Karyotypic analyses of the best-characterized species O. tauri show it to carry two chromosomes that vary in size between individual clonal lines, probably an evolutionarily ancient feature that emerged before species' divergences within the Mamiellales. By using a culturing technique specifically adapted to members of the genus Ostreococcus, we purified >30 clonal lines of a new species, Ostreococcus mediterraneus sp. nov., previously known as Ostreococcus clade D, that has been overlooked in several studies based on PCR-amplification of genetic markers from environment-extracted DNA. Phylogenetic analyses of the S-adenosylmethionine synthetase gene, and of the complete small subunit ribosomal RNA gene, including detailed comparisons of predicted ITS2 (internal transcribed spacer 2) secondary structures, clearly support that this is a separate species. In addition, karyotypic analyses reveal that the chromosomal location of its ribosomal RNA gene cluster differs from other Ostreococcus clades.


Assuntos
Clorófitas/classificação , Clorófitas/crescimento & desenvolvimento , Genoma , Filogenia , Sequência de Bases , Clorófitas/química , Clorófitas/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Variação Genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Água do Mar/parasitologia
18.
Genome Biol Evol ; 5(5): 848-59, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23563969

RESUMO

Prasinoviruses are among the largest viruses (>200 kb) and encode several hundreds of protein coding genes, including most genes of the DNA replication machinery and several genes involved in transcription and translation, as well as transfer RNAs (tRNAs). They can infect and lyse small eukaryotic planktonic marine green algae, thereby affecting global algal population dynamics. Here, we investigate the causes of codon usage bias (CUB) in one prasinovirus, OtV5, and its host Ostreococcus tauri, during a viral infection using microarray expression data. We show that 1) CUB in the host and in the viral genes increases with expression levels and 2) optimal codons use those tRNAs encoded by the most abundant host tRNA genes, supporting the notion of translational optimization by natural selection. We find evidence that viral tRNA genes complement the host tRNA pool for those viral amino acids whose host tRNAs are in short supply. We further discuss the coevolution of CUB in hosts and prasinoviruses by comparing optimal codons in three evolutionary diverged host-virus-specific pairs whose complete genome sequences are known.


Assuntos
Clorófitas/genética , Códon/genética , Evolução Molecular , Vírus/genética , Clorófitas/classificação , Clorófitas/virologia , Replicação do DNA/genética , Genoma Viral , Fotossíntese/genética , RNA de Transferência/classificação , RNA de Transferência/genética , Vírus/classificação
19.
ISME J ; 7(9): 1678-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23575371

RESUMO

Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2-1.6 µm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 10(4)-10(5) genomes ml(-1) for the samples from the photic zone and 10(2)-10(3) genomes ml(-1) for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.


Assuntos
Biodiversidade , Vírus de DNA/classificação , Vírus de DNA/fisiologia , Metagenoma , Animais , Núcleo Celular/virologia , Citoplasma/virologia , Vírus de DNA/genética , Eucariotos/virologia , Transferência Genética Horizontal , Genes Virais/genética , Genoma Viral/genética , Oceano Índico , Oceanos e Mares , Oomicetos/virologia , Phycodnaviridae/classificação , Phycodnaviridae/genética , Phycodnaviridae/fisiologia , Filogenia , Densidade Demográfica , Células Procarióticas/fisiologia
20.
Genome Biol ; 13(8): R74, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22925495

RESUMO

BACKGROUND: Bathycoccus prasinos is an extremely small cosmopolitan marine green alga whose cells are covered with intricate spider's web patterned scales that develop within the Golgi cisternae before their transport to the cell surface. The objective of this work is to sequence and analyze its genome, and to present a comparative analysis with other known genomes of the green lineage. RESEARCH: Its small genome of 15 Mb consists of 19 chromosomes and lacks transposons. Although 70% of all B. prasinos genes share similarities with other Viridiplantae genes, up to 428 genes were probably acquired by horizontal gene transfer, mainly from other eukaryotes. Two chromosomes, one big and one small, are atypical, an unusual synapomorphic feature within the Mamiellales. Genes on these atypical outlier chromosomes show lower GC content and a significant fraction of putative horizontal gene transfer genes. Whereas the small outlier chromosome lacks colinearity with other Mamiellales and contains many unknown genes without homologs in other species, the big outlier shows a higher intron content, increased expression levels and a unique clustering pattern of housekeeping functionalities. Four gene families are highly expanded in B. prasinos, including sialyltransferases, sialidases, ankyrin repeats and zinc ion-binding genes, and we hypothesize that these genes are associated with the process of scale biogenesis. CONCLUSION: The minimal genomes of the Mamiellophyceae provide a baseline for evolutionary and functional analyses of metabolic processes in green plants.


Assuntos
Clorófitas/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Composição de Bases , Clorófitas/classificação , Evolução Molecular , Ordem dos Genes , Transferência Genética Horizontal , Genômica , Íntrons , Ácido N-Acetilneuramínico/metabolismo , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...